skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Yiwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrohydrodynamic (EHD) printing has been used in various applications (e.g., sensors, batteries, photonic crystals). Currently, research on studying the relationships between EHD jetting behaviors, material properties, and processing conditions is still challenging due to a large number of parameters, cost, time, and the complex nature of experiments. In this research, we investigated EHD printing behavior using a machine learning (ML)-guided approach to overcome limitations in the experiments. Specifically, we investigated two jetting modes and the size of printed material with a broader range of material properties and processing parameters. We used samples from both literature and our own experiment results with different type of materials. Different ML models have been developed and applied to the data. Our results have shown that ML can navigate a vast parameter search space to predict printing behavior with an accuracy of higher than 95% during EHD printing. Moreover, the results showed that ML models can be used to predict the printing behavior and feather size for new materials. The ML models can guide the investigation of EHD printing and helped us understand the printing behavior in a systematic manner with reduced time, cost, and required experiments. 
    more » « less
  2. Electrohydrodynamic (EHD) printing has become a promising and cost-effective technique for producing high-resolution and large-scale features. One widely recognized obstacle in EHD printing is nozzle clogging due to solvent evaporation or ink polymerization. Moreover, printing highly viscous materials often requires pressure or other external force to assist the ink flow during the printing, which increases the complexity of process control and the required energy. In this work, we developed a novel ultrasonic vibration-assisted EHD printhead and associated process to effectively eliminate the nozzle clogging for the printing of high-viscosity and high-evaporation-rate inks. A series of experimental tests were conducted to characterize the printhead design and process parameters (i.e., vibration frequency, vibration amplitude, and printing voltage). The results demonstrated that superimposing ultrasonic vibration on the EHD printing nozzle can effectively enhance current EHD printing capabilities, such as reducing required pressure, eliminating nozzle clogging, and providing stable and continuous printing for high viscosity and high solvent evaporation rate material. With the optimal parameters, a filament with a diameter of around 1 µm can be continuously printed. In the paper, we successfully applied this developed ultrasonic-assisted EHD process to print high-resolution 2D patterns. 
    more » « less
  3. Temperature control is crucial for live cell imaging, particularly in studies involving plant responses to high ambient temperatures and thermal stress. This study presents the design, development, and testing of two cost-effective heating devices tailored for confocal microscopy applications: an aluminum heat plate and a wireless mini-heater. The aluminum heat plate, engineered to integrate seamlessly with the standard 160 mm × 110 mm microscope stage, supports temperatures up to 36°C, suitable for studies in the range of non-stressful warm temperatures (e.g., 25-27°C forArabidopsis thaliana) and moderate heat stress (e.g., 30-36°C forA. thaliana). We also developed a wireless mini-heater that offers rapid, precise heating directly at the sample slide, with a temperature increase rate over 30 times faster than the heat plate. The wireless heater effectively maintained target temperatures up to 50°C, ideal for investigating severe heat stress and heat shock responses in plants. Both devices performed well in controlled studies, including the real-time analysis of heat shock protein accumulation and stress granule formation inA. thaliana. Our designs are effective and affordable, with total construction costs lower than $300. This accessibility makes them particularly valuable for small laboratories with limited funding. Future improvements could include enhanced heat uniformity, humidity control to mitigate evaporation, and more robust thermal management to minimize focus drift during extended imaging sessions. These modifications would further solidify the utility of our heating devices in live cell imaging, offering researchers reliable, budget-friendly tools for exploring plant thermal biology. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026
  4. Abstract Three-dimensional (3D) microneedle arrays (MAs) have shown remarkable performances for a wide range of biomedical applications. Achieving advanced customizable 3D MAs for personalized research and treatment remain a formidable challenge. In this paper, we have developed a high-resolution electrohydrodynamic (EHD) 3D printing process for fabricating customizable 3D MAs with economical and biocompatible molten alloy. The critical printing parameters (i.e., voltage and pressure) on the printing process for both two-dimensional (2D) and 3D features are characterized, and an optimal set of printing parameters was obtained for printing 3D MAs. We have also studied the effect of the tip-nozzle separation speed on the final tip dimension, which will directly influence MAs' insertion performance and functions. With the optimal process parameters, we successfully EHD printed customizable 3D MAs with varying spacing distances and shank heights. A 3 × 3 customized 3D MAs configuration with various heights ranging from 0.8 mm to 1 mm and a spacing distance as small as 350 μm were successfully fabricated, in which the diameter of each individual microneedle was as small as 100 μm. A series of tests were conducted to evaluate the printed 3D MAs. The experimental results demonstrated that the printed 3D MAs exhibit good mechanical strength for implanting and good electrical properties for electrophysiological sensing and stimulation. All results show the potential applications of the EHD printing technique in fabricating cost-effective, customizable, high-performance MAs for biomedical applications. 
    more » « less
  5. Microheaters have drawn extensive attention for their substantial applications in thermotherapy, gas sensors, thin film preparation, biological research, etc. In plant physiology, uncovering the mechanisms by which plants sense and respond to environmental temperature fluctuations will help us better understand the impact of climate change on crop yield and ecosystem resilience. Currently, microheaters with long-term heating capability have rarely been applied to investigate plant thermal responses. In this study, we applied a direct writing technique to fabricate microheaters suitable for studying plant thermal biology with silver conductive ink. The optimal printing conditions and the heating performance (e.g., stability, durability, reusability) of the printed heaters were thoroughly characterized. The printed microheaters can provide stable and constant heating to plant organs for over four days. When placed near plant leaves to create localized heating, the microheater could successfully activate the expression of a thermoresponsive marker gene in plants. These results demonstrate the potential of applying printed microheaters to study plant thermal biology at the organ and tissue level. 
    more » « less
  6. A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc . With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices. 
    more » « less